Dissipative Anchor from Cintec

Words: Dan KamysCINTEC International, a company specializing in structural masonry retrofit strengthening, repair and preservation, has developed a new type of dissipative wall anchor. The new anchor solves the issues of how to protect heritage buildings in some of the most earthquake-prone parts of the world. This product is a dissipative anchor designed for use with Cintec’s wall anchor system.

The standard Cintec anchor system consists of a stainless-steel anchor body encapsulated in a fabric sock. Diamond holes are drilled into the building, and each anchor is placed in a hole. A specialized grout is pumped to the far end of the anchor, filling from back to front, until the entire sock is inflated like a balloon. After the anchor has been inflated, the walls have been securely strengthened without affecting the outside appearance of the building.

For buildings subject to regular earthquake activity, there is a possibility of pull-out damage at the anchorage head. This anchor solves this problem by allowing for small amounts of movement through a sliding mechanism.

The Cintec dissipative anchor consists of a set of stainless-steel plates to which four bolts apply pressure, creating friction to an adjustable degree. There are built-in stops to restrict the sliding motion, and connectors that link to Cintec’s standard anchor rods. The anchor allows a controlled and repairable drift for the walls, managing the amount of seismic energy fed into the structure and, therefore, minimizing damage to the building.

The development of this anchor resulted from Cintec’s involvement with the European NIKER project. In 2011, Cintec was chosen as the only British commercial company to actively participate in this project, the aim of which was to protect the artistic value of cultural heritage sites from earthquake-induced damage. Cintec has been working in collaboration with the University of Bath to create and test the dissipative anchor since then, and has now patented the finished product.

Cintec anchors have been used to strengthen and restore historically significant structures around the globe, including Egypt’s pyramids, Windsor Castle, and even the White House.

For more information, visit www.cintec.com.
From Day One to Long-Term Success: Onboarding Strategies for Contractors
January 2026

The construction industry is facing one of its toughest challenges in decades. Companies are struggling to find enough skilled workers while competing to keep the ones they have. At the same time, projects are becoming more complex, deadlines are tighter,

Finding the Right PPE for Your Work
January 2026

When it comes to PPE, one thing’s for sure: safety isn’t one size fits all. The work you’re doing, where you’re doing it, and even what time of year it is, can all make a big difference in what gear actually works. Price, comfort, and job performance all

Back Injuries: The Real Cost and How to Prevent Them
January 2026

The mention of back injuries makes mason contractors cringe, and for good reason. Masons lift heavy objects every day, all day long. When a person sustains a back injury, it is serious. It affects every part of their life, from their ability to perform wo

Detailing for Durability: The 2026 Guide to High-Performance Stone Veneer Transitions
January 2026

Some of the most expensive failures involving manufactured stone veneer installations don’t come from the stone at all, but rather from the material transitions and flashing around it. Transitions are weak points in the overall cladding where water can fi